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ABSTRACT  

Equivalent circulating density (ECD) is a critical parameter in drilling operations that helps 

to ensure the safety of drilling personnel and equipment. Mud ECD has over time received 

substantial attention in theoretical analyses, laboratory experiments, field measurements and 

modelling. This study developed a bio-inspired algorithm based on an artificial neural network 

to predict mud equivalent circulating density using data obtained from fields in the Niger Delta 

region of Nigeria. Eleven variables namely: depth, temperature, pore pressure,  flow rate, mud 

weight, average equivalent annular diameter across bottom hole assembly (BHA), average 

equivalent annular diameter across drill pipe (DP), flow conduit length across BHA,  flow 

conduit length across DP, average annular velocity across BHA and average annular velocity 

across DP were used as the input parameters to the algorithm. To develop the model, 1011 

data points collated from different fields were used to develop the model. To assess the model 

performance, four statistical error tools namely: the mean square error (MSE), average 

absolute percentage error (AAPE), root mean square error (RMSE) and determination 

coefficient (R2) were adopted. The best performing topology for  11 inputs was: 11–3–1. The 

results indicate that the model developed by this topology had an R2 value of 0.9993 and an 

MSE of 0.000265, AAPE of 0.337 and RMSE of 0.01628. In order to ascertain the parametric 

importance of the input variables used, the Garson’s algorithm was utilized. In this regard, six 

input parameters had significant effects on ECD namely: mud weight (34%), pore pressure 

(14%), average equivalent annular diameter across drill pipe (9.2%), average equivalent 

annular diameter across BHA (9%), temperature (8.1%), depth (7.3%) and average annular 

velocity across drill pipe (7.04%). In addition, the ANN model was presented in an explicit 

form that makes it easy to be deployed in software applications, something rarely found in most 

ANN studies. In comparison with the existing model in literature for Niger Delta oilfield mud 

equivalent circulating density prediction, the developed model performed better on all the 

assessment indicators.  

 

1. INTRODUCTION 

While drilling an oil well, there are numerous challenges that are related to the drilling 

mud that arise from time to time. These challenges include but are not limited to lost circulation, 

kicks, formation fracture and in some rare cases well blowout. To prevent these issues, it is 

necessary to precisely determine the effective circulating density operating at the bottom of the 

well.  By definition, equivalent circulating density (ECD) is defined as the sum of the mud 
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hydrostatic pressure and the annulus pressure loss acting on the formation (Haciislamoglu 

1994). These challenges become more pronounced in deepwater and high-pressure high-

temperature (HPHT) wells where the difference between the formation pore pressure and the 

formation fracture pressure (drilling window) tends to be small (Alsaihati et al., 2021). For 

formations with a narrow drilling window, the ECD has to be accurately determined. 

Neglecting temperature and pressure in such situations gives rise to a greater chance of kicks 

occurring due to well underbalance (Osisanya and Harris, 2005). 

Several factors were found by various researchers to have an impact on the ECD and 

among them were the annular pressure losses, wellbore geometry, mud properties such as 

density, viscosity, mud pumping rate, downhole pressure and temperature, and concentration 

of cuttings (Rommeveit, 1997). A detailed discussion of factors affecting ECD is provided by 

Skalle (2010). Due to the multiplicity of factors affecting ECD, accurately measuring it 

downhole remains a daunting challenge.  

To measure ECD in the oilfield, downhole sensors are utilized. The main tools used 

now are measurement while drilling (MWD) and pressure while drilling (PWD) tools (Lapierre 

et al., 2006; Abdelgawad et al., 2019). These downhole sensors are expensive, have operational 

limitations such as high pressure and high temperature which affects their output at downhole 

conditions and are susceptible to wear and tear (Roy et al., 2022).  

Conventional  computer  programs  estimate  ECD  using several  rheological  data  

inputs  along  with  a  user-defined  rheological  model  (Gamal et al., 2021).  The rheological 

input parameters are calculated from the laboratory experiments. Even after this, it has been 

seen that a notable difference exists between the calculated and field data (Maglione et al., 

1996). This can be attributed to the fact that the assumptions of these models do not apply to 

most of the drilling sites. 

ECD can also be estimated while drilling using hydraulics. Nevertheless, correlations 

are utilized to predict ECD prior to drilling. According to Aljubran et al. (2021), the main goal 

of developing and using an ECD model is to ensure that the applied static/dynamic mud 

pressure is within the drilling margin. This implies that in order to prevent wellbore instability, 

a drilling mud must have enough mud weight, but it must not be larger than the fracture pressure 

that would cause formation cracks. 

Many correlations are available in the literature to predict ECD. However, most of those 

correlations did not use enough data, and/or the model is only applicable in a specific area 

(Alkinani et al., 2019). In recent times, there has been an upsurge in the use of machine learning 

techniques such as support vector machines, artificial neural networks, fuzzy logic and hybrid 

intelligent systems to develop predictive models for estimating different parameters in the 

oilfield. In these applications, these techniques have proven their ability to solve complicated 

problems that cannot be solved analytically. Therefore this study aims to use the artificial 

neural network technique to develop a robust model for predicting downhole ECD using data 

from Niger Delta oilfields. 

2. REVIEW OF RELATED LITERATURE 

2.1 Definition of Equivalent Circulating Density (ECD) 

Equivalent circulating density abbreviated as ECD is essentially the effective density of a 

circulating fluid in the wellbore arising from the sum total of the hydrostatic pressure imposed 
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by the static fluid column and the frictional pressure (Raabe and Jortner, 2022). According to 

Rehm et al. (2008) when mud is circulated in a well, there is an increase in friction that 

increases the wellbore pressure over the when the mud is in static condition. The ECD at any 

point of interest, the dynamic equivalent density, ECD, is substantially greater than the 

equivalent static density (ESD). Prevention of kicks and loss of circulation requires that 

downhole ECD remains within the given boundaries. ECD provides the information required 

to determine how close the drilling operation is within given safety margins usually obtained 

by geological or offset well data.  

The ECD is calculated using Equation 1. 

𝐸𝐶𝐷 = 𝐸𝑆𝐷 +
∆𝑃

𝐾∗𝑇𝑉𝐷
                                                                             Equation 1 

Where ESD is the equivalent static density of mud; ΔP is the pressure loss due to friction; TVD 

is the true vertical depth of the well and K is a constant equal to 0.052. The ECD formula in 

Equation 2.1 is a simple, however when the changes in mud viscosity with pressure and 

temperature are accounted for, then computation of ECD becomes more complex especially in 

high temperature, high pressure wells (Rehm et al., 2008). ECD is equivalent to the bottomhole 

pressure equation expressed as a mud-density gradient (Sarbini, 2012). 

The formula for estimating the pressure loss during flow as a consequence of the contact 

between the mud and the wellbore walls is given in Equation 2 

∆𝑃𝑓 =
2𝑓𝜌𝑣2

𝑑
∆𝐿                                                                                      Equation 2 

Where ρ = mud density; v is mud velocity; ΔL is length of flow conduit; d is pipe diameter and 

f is the fanning friction factor. 

According to Samuel (2010), in directional wellbores, vertical depth should be used and the 

formula for the multiple sections of the well is shown in Equation 3. 

𝐸𝐶𝐷 = 𝜌𝑚 + (
∑ ∆𝑃𝑎

𝑛
𝑖=1

0.052∗∑ ∆𝐿𝑡𝑣𝑑
𝑛
𝑖=1

) 𝑝𝑝𝑔                                                         Equation 3 

Where 𝜌𝑚 = mud density, ∆𝑃𝑎 = annular pressure loss, ∆𝐿𝑡𝑣𝑑 = true vertical depth of each 

section and  n = the number of wellbore sections. 

 

 

2.2 Distinction Between Equivalent Circulating Density (ECD) and Equivalent Static 

Density (ESD) 

Equivalent static density is essentially the mud weight when the mud is not flowing or is not 

being circulated. Instances when the mud is not circulated include when the pumps are turned 

off to make a connection (Grace, 2017) whereas equivalent circulating density is the mud 

weight when the mud is being pumped or circulated into the well through the drill pipe and is 

the summation of ESD and pressure losses in the annulus due to mud flow to the surface. The 

greater the pressure loss, the greater the ECD would be. The pressure loss is essentially a 

function of the frictional pressure loss arising from the contact made between the mud and the 
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borehole wall as it flows upwards to the surface. This contact creates some sort of “drag” 

because of friction and the mud loses some of the pressure supplied by the mud pump in order 

to overcome this frictional drag due to contact. This pressure loss is absorbed by the formation. 

Therefore, this pressure loss when converted to density and added to ESD gives the ECD. Thus, 

the numerical value of ECD is always greater than ESD. The pressure loss due to friction is 

determined by the mud rheological properties, the geometry of the wellbore and the mud flow 

rate (Osisanya and Harris, 2005). According to Dokhani et al. (2016), the commonly used term 

for calculating downhole pressure in hydrostatic pressure calculations is equivalent static 

density (ESD) while the equivalent circulating density (ECD) is the necessary input for 

hydraulic calculations, though, when there is circulation.  

2.3 Models for Estimating ECD 

ECD can be predicted using various methods, including analytical, numerical, and empirical 

methods. Some of these methods are described in this section. 

2.3.1 Analytical models for ECD estimation 

An analytical model represents the system using a set of mathematical equations that specify 

parametric relationships and the parameter values associated with those relationships as a 

function of time, space, and/or other system parameters. Analytical models are primarily 

quantitative or computational in nature. 

2.3.2 Empirical Models 

The empirical model provides explicit empirically derived equations for estimating mud 

density at various temperature-pressure conditions. The compositional model on the other 

hand, takes into account the volumetric behaviour of each of the individual mud constituents 

in response to variations in temperature and pressure (Micah, 2011). And therefore, prior 

knowledge of the composition (oil, water and solids) of the drilling fluid is required in order to 

employ the use of these compositional models. Generally, these models can be assigned into 

three categories. 

i. Category 1: composite models, represented by the model of Hoberock. . In this category, 

drilling fluid is considered as a mixture of salt water, base oil, and solid materials. The property 

of each component of the mixture varies with temperature and pressure. When the change rule 

of a component at high temperature and high pressure is determined, separate experiments must 

be carried out to test other components of the drilling fluid, thus understanding their change 

rules before using. Therefore, this category of models is greatly limited in application. 

ii. Category 2: semi- empirical models, represented by those of Sorelle, Harris, and Guan 

Zhichuan. In this category, a mechanical relationship among drilling fluid density, pressure 

(characterized by elastic compression coefficient Cp), and temperature (characterized by 

thermal expansion coefficient Cr) is established and the empirical formula using temperature, 

pressure, Cp, and Cr is obtained through fitting with a certain amount of experimental data. 

However, the pressure and temperature of drilling fluids affect the drilling fluid density in 

actual practices. 

iii. Category 3: empirical models, represented by those of Yan Jienian and Wang Haige. This 

category of model is obtained through fitting the laboratory experimental data of a certain 

number of samples after multivariate nonlinear regression. This model can be expressed in 
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different forms and its precision depends on the selected mathematical formulas and sample 

quantity. 

 

2.3.3 Machine learning based models for ECD prediction 

Some of the commonly used ML methods for ECD prediction include: 

i. Artificial Neural Networks (ANNs): ANNs are commonly used for ECD prediction due to 

their ability to model complex relationships between input and output variables. ANNs are 

trained on historical drilling data, including drilling parameters such as flow rate, mud weight, 

and pump pressure, to predict ECD. 

ii. Support Vector Machines (SVMs): SVMs are another popular ML method for ECD 

prediction. SVMs work by finding the hyperplane that best separates the data into different 

classes. In ECD prediction, SVMs are trained on a dataset of drilling parameters and their 

corresponding ECD values, and the resulting model can then be used to predict ECD for new 

drilling scenarios. 

iii. Decision Trees: Decision trees are a type of ML algorithm that can be used for ECD 

prediction. Decision trees work by partitioning the data based on the values of input variables 

and constructing a tree-like model to predict the output variable. In ECD prediction, decision 

trees are trained on a dataset of drilling parameters and their corresponding ECD values, and 

the resulting model can be used to predict ECD for new drilling scenarios. 

iv. Random Forests: Random forests are an ensemble learning method that combines multiple 

decision trees to improve prediction accuracy. In ECD prediction, random forests can be trained 

on a dataset of drilling parameters and their corresponding ECD values, and the resulting model 

can be used to predict ECD for new drilling scenarios. 

Overall, machine learning methods can provide accurate and efficient ECD predictions, which 

can help drilling engineers optimize drilling operations and improve safety. 

A summary of these methods and their application in ECD prediction is summarized in Table 

1. 

Table 1: Summary of researches on mud ECD prediction using artificial intelligence  

Reference  AI technique Input variables R2 AAPE 

(%) 

Elzenary et 

al. (2018). 

ANN 

ANFIS 

ROP, mud weight, drill pipe 

pressure 

0.9982 

0.9982 

0.2237 

0.2262 

Alkinani et 

al. (2019) 

ANN 

[7 – 12 – 1 ] 

Flow rate (Q) in L/min 

Mud weight in gm/cc, Nozzles 

total flow area in inch2, Plastic 

viscosity, Revolutions per 

minute (RPM), Weight on bit 

(WOB) in Tons, Yield point 

0.98 NA 

Han et al. 

(2019) 

Autoregressive 

integrated 

moving 

Not available  Not 

available  

Mean 

absolute 
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average 

(ARIMA 

BPNN) hybrid 

deviation 

= 0.0008 

Abdelgawad 

et al. (2019) 

ANN 

[3 – 20 – 1]  

ANFIS 

Rate of penetration (ROP) in 

m/h, mud weight in lb/gal & the 

drill pipe pressure (DPP) 

0.9964 0.2237 

Gamal et al. 

(2021) 

ANN 

ANFIS 

penetration rate, rotating speed, 

torque, weight on bit, pumping 

rate, and pressure of standpipe 

0.99 0.32 

Alsaihati et 

al., (2021a) 

SVM,  

Random forest 

& functional 

network (FN) 

Flow rate (Q), hook-load (HL), 

ROP, rotary speed, SPP, WOB, 

surface drilling torque (T) 

SVM: 

0.97 

FN: 0.99 

RF: 0.99 

 

Alsaihati et 

al. (2021b) 

PCA-based 

SVM 

flow rate (Q), hook-load (HL), 

ROP, rotary speed (RS), SPP 

and surface drilling torque (T) 

0.95 Not 

available  

Roy et al. 

(2022) 

Random 

Forest,  

SVM,  

XGBoost, 

Decision Tree,  

Elastic net 

regression 

Rate of penetration, Weight on a 

bit, mud density, torque, pump 

pressure 

RF: 0.992 

SVM: 

0.987 

DT: 0.984 

XGBoost: 

0.982 

Elastic 

Net: 

0.991 

 

Robinson et 

al. (2022) 

Deep neural 

network 

Standpipe pressure, mud 

density in, mud flow in, bit 

depth, surface rotary speed, and 

the rate of penetration (ROP) 

Not 

available 

MAE = 

0.326 

 

3. MATERIALS AND METHODS 

The focus of this section is to showcase the data sources and strategies necessary to develop 

the models outlined in the objectives of this study. Furthermore, this chapter would include the 

details of the modelling parameters and process. 

3.1 Data Collected and its Features 

The data used for this work was obtained from the field. The dataset contains 1011 data 

points and consist of eleven input parameters namely: Depth, temperature, pore pressure, flow 

rate, mud weight, average equivalent annular diameter across BHA, average equivalent annular 

diameter across DP, flow conduit length across BHA, flow conduit length across drillpipe, 

average annular velocity across BHA and average annular velocity across drill pipe. The output 

parameter considered is the equivalent circulating density (ECD). The minimum and maximum 

of each parameter as well as their units of measurement is shown in Table 2.  
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Table 2: Inputs and output parameters of ECD model and their respective values 

Database parameter  Minimum Maximum Unit 

Depth  131 15173.7 Ft 

Temperature  77.67 368.6023 °F 

Pore pressure 65.58735 15116.67 Psi 

Flow rate   64.92451 1225.46 gpm 

Mud weight  8.5799 18.326 Ppg 

Average equivalent annular diameter across 

BHA 1.17 20.8905 

Inches 

Average equivalent annular diameter across 

DP 1.92 23.75 

Inches 

Flow conduit length across BHA 31.82376 3899.887 Ft 

Flow conduit length across drillpipe 62.02 17458.53 ft  

Average annular velocity across BHA 0.122264 12.64414 ft/s 

Average annular velocity across drill pipe 0.157697 13.05758 ft/s 

Equivalent circulating density (ECD) 8.72235 20.30857 Ppg 

 

3.2. Overview of Artificial Neural Network (ANN) 

Artificial Neural Networks (ANNs) are a type of machine learning algorithm inspired 

by the structure and function of the human brain. ANNs consist of layers of interconnected 

nodes (also known as artificial neurons) that process information and learn to make predictions 

or decisions (Behnoud far and Hosseini, 2017). The basic structure of an ANN includes an 

input layer, one or more hidden layers, and an output layer. Each node in the input layer 

represents a feature or attribute of the input data, while the nodes in the hidden layers process 

the input data using mathematical operations, and the nodes in the output layer produce the 

final prediction or decision. The inputs are the set of values or features in a dataset required to 

predict the output. The hidden layer neurons are tasked with the responsibility of feature 

extraction. The manner in which ANN processes information is as follows: First, each of the 

inputs (I1, I2, I3) are assigned connection weights (w). These weights are basically the real 

numbers that are linked with each input which defines the importance of the input in predicting 

the output. These inputs are then multiplied by their individual connection weights. The 

weighted sum of the inputs and connection weights are then combined and a bias term (b) is 

added to the summation. The essence of the bias is to either increase or decrease the input that 

goes into the activation function. The summation is passed through a transfer or activation 

function, and the output is then computed and transferred to another neuron. The activation 

function essentially introduces non-linearity into the ANN model. Sigmoid transfer function 

and linear activation function (purelin) are recommended for the hidden and output layers 

respectively (Mekanik et al., 2013). These layers are depicted in Figure 3.1. 
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       Figure 3.1: Schematic diagram of the layers of an artificial neural network  

The first step of modelling with ANN is the training of the network. The training 

process of an ANN involves adjusting the weights and biases of the nodes in the network to 

minimize the difference between the predicted output and the actual output. This is achieved 

by feeding the network with a large amount of training data, and using backpropagation 

algorithm to propagate the error back through the network and adjust the weights and biases 

accordingly. (Demuth et al., 2009). The performance of the network is equally dependent on 

the hidden layer neurons; where few neurons lead to under fitting and excessive number of 

neurons leads to over fitting (Aalst et al., 2010). The overall correlation between inputs and 

output for an ANN model is as shown in Equation 3.1. 

𝑦𝑘 = 𝑓𝑜[∑ 𝑤𝑘𝑗𝑗 . 𝑓ℎ(∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑗𝑖 ) + 𝑏𝑘]             Equation 3.1 

Where 𝑥 is an input vector; 𝑤𝑖𝑗 represents the weight from the 𝑖th neuron in the input layer to 

the 𝑗th in the hidden layer; 𝑏𝑗 represents the bias of 𝑗th hidden neuron; 𝑤𝑘𝑗 represents the weight 

from the 𝑗th neuron in the hidden layer to the 𝑘th neuron in the output layer; 𝑏𝑘 represents the 

bias of 𝑘th output neuron and 𝑓ℎ and 𝑓𝑜 are the activation functions for the hidden and output 

neuron respectively. For more details on the ANN technique, the work of Mekanik et al.(2013) 

is recommended. 

3.3 Model development 

Modelling is essentially the process by which a simplified mathematical reality is constructed 

from a more complex physical reality (Barbour and Krahn, 2004). In the case of modelling 

with ANN, the following has to be taken into consideration. 

3.3.1 Data Normalization 

Data normalization is a technique used in data pre-processing to transform data into a common 

scale and range. The main purpose of data normalization is to remove inconsistencies and 

improve the accuracy of the machine learning models by bringing the features onto a similar 

scale. The normalization technique adopted used in this study is the min – max normalization 

technique. A short description of this approach is as follows: Min-max normalization as shown 

in Equation 3.2 performs a linear alteration on the original data. The values are normalised 

within the given range. For mapping a value of an attribute X from range [minX, maxX] to a 

new range [new_minX, new_maxX], the computation is given by: 
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             Y =  2
(X−𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)
− 1                                                  Equation 3.2 

where 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum and maximum values of X, where X is the set of 

observed values of X and Y is the normalised value of X. This normalization technique reduces 

the values to fall between -1 and 1. 

When the ANN network training is completed, since the value of the network output is 

normalised, it needs denormalization to transform it into the actual value. Equation 3.3 is used 

for the denormalization. 

             X = 0.5(Y + 1)(Xmax − Xmin) + Xmin                                   Equation 3.3 

where Xmin and Xmax are the minimum and maximum values in X, where X is the set of 

observed values of X and Y is the normalised value of X. 

3.3.2 Procedure for Modelling Using Artificial Neural Network  

In building a predictive model using ANN based on supervised learning, the steps below are 

followed. First, the data upon being fed into the network is normalized and then split in three 

parts namely training, validation and testing datasets. While the training dataset is used for 

learning (to fit the network weights), the validation dataset is used to adjust the network 

architecture and the test dataset assesses the generalization performance of the trained network. 

The network is trained by minimizing an appropriate error function. The error function used is 

the mean square error.  The performance of the network is then compared by evaluating the 

error function using the validation dataset, and the network having the smallest error is selected.                              

3.4 Parameter Settings for Model Training, Testing and Validation 

The settings used for the ANN model is presented in Table 3.3.  By default, the MATLAB 

software partitions the data into three sets: the training data set (70%), test data set (15%) and 

validation data set (15%). Training data are used to adjust the weight of the neurons. Validation 

data are used to guarantee that the network generalizes at the training stage, the testing data is 

used to evaluate the network after being developed. The stopping criteria are usually 

established by the preset error indices e.g. mean square error (MSE) or when the number of 

epochs reaches 1000. For the ANN model, the lowest MSE was used. 

          

Table 3.3: Parameter settings for ANN models 

Parameters Value 

Training data set 707 (70% of dataset) 

Testing data set 152 (15% of dataset) 

Validation data set 152 (15% of dataset) 

Number of hidden layers 1 

Number of neurons in hidden layer 1 – 20 

Activation function (hidden layer) Tansig 

Activation function (output  layer) Purelin 

Number of epochs 1000 

Architecture selection Trial and error 

Target goal mean square error 10-5 

Minimum performance gradient 10-5 
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In this study, the ANN architecture used to build the model is the feed-forward back 

propagation method with adaptive weights. In this method, data flows in a forward manner 

from the input to the output layer and the graphs have no loops.  Some of the benefits of this 

gradient-based technique include its efficient implementations, good fine-tuning and faster 

convergence when compared with other methods.  

3.5 Determining the Number of Neurons in the Hidden Layer 

Ascertaining the number of neurons in the hidden layer of an ANN is very crucial and 

has a dominant effect on the ANN learning and performance. However, up until now, there has 

been no universally accepted method for determining it. Although, the universal approximation 

theorem, states that for any input-output mapping function in supervised learning, there exists 

a multilayer perceptron with a given number of hidden layer neurons which is approximately 

correct. Unfortunately, the theorem gives one no clue on how to find this number. Therefore 

the trial and error method was employed to find this number.    

3.6 Model Performance Assessment Methods 

To assess the performance and effectiveness of the proposed ANN model, four error 

analysis benchmarks are employed to evaluate the proposed models. The error analysis metrics 

include: coefficient of determination (R2), mean square error (MSE), root mean square error 

(RMSE) and Average Absolute Percentage Error (AAPE).  

The mathematical descriptions of the four statistical metrics are shown in Equations 3.4 – 3.7.  

𝑅2 = 1 −
∑ (𝑦𝑎𝑐𝑡𝑢𝑎𝑙−𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2𝑁
𝑖=1

∑ (𝑦𝑎𝑐𝑡𝑢𝑎𝑙−�̅�)2𝑁
𝑖=1

                         Equation 3.4 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2𝑁
𝑖=1                  Equation 3.5 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2𝑁
𝑖=1             Equation 3.6 

𝐴𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑎𝑐𝑡𝑢𝑎𝑙−𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑦𝑎𝑐𝑡𝑢𝑎𝑙
| ∗ 100𝑁

𝑖=1                Equation 3.7 

For Equations 3.4 – 3.7, N = number of data samples,  𝑦𝑎𝑐𝑡𝑢𝑎𝑙 = the actual or experimental 

values, 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = values predicted by the developed model, �̅� = average of the actual or 

experimental values. 

4. RESULTS AND DISCUSSION 

This section presents the results obtained in the course of developing the ANN model for the 

prediction of ECD. First, the result from the method used for selecting the model architecture 

is presented. The results from the performance of the proposed models are presented next while 

the mathematical representation of the models comes thereafter. The results from the 

parametric importance of the input variables, the models computational burden analysis would 

be highlighted.  
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4.1 Optimal Number of Neurons in Hidden Layer 

 

The number of neurons in the network’s hidden layer influences the generalisation ability of 

the ANN model. In order to find the appropriate architecture for the networks, the trial-and-

error approach was adopted. In this regard, numerous network topologies were evaluated, 

wherein the number of neurons in the hidden layer was varied between 1 and 20. The error 

function chosen was the MSE. Decision on the optimum topology was based on the minimum 

error of the testing data. Each topology was tried for 25 times in order to get the best network 

from that topology. At the end of the trials, it was observed that a network having 3 neurons in 

the hidden layer gave the optimal performance for ECD prediction. The optimal architecture 

of the ANN network for the model with 11 input parameters is shown in Figure 4.2.  

DEPTH

TEMPERATURE

PORE PRESSURE

FLOW RATE

MUD WEIGHT

AV. EQ. ANNULAR DIAMETER ACROSS BHA

AV. EQ. ANNULAR DIAMETER ACROSS DP

FLOW CONDUIT LENGTH ACROSS BHA

FLOW CONDUIT LENGTH ACROSS DP

AV. ANNULAR VELOCITY ACROSS BHA

AV. ANNULAR VELOCITY ACROSS DP

INPUT LAYER

HIDDEN LAYER
OUTPUT LAYER

(3 Neurons) (1 Neuron)

(11 Neurons)  

             Figure 4.2: Optimal architecture of the neural network for ECD prediction 

 

Figure 4.3 presents the scatter plots of the proposed model predicted ECD versus actual results 

for the training, validation and testing datasets respectively. The predicted model results are in 

agreement with the field values for the training, testing and validation sets as seen in their 

correlation coefficients (R). The reason for this assertion is that the closer the correlation 

coefficient is to 1, the better the model. However, using only the correlation coefficients as the 

basis for determining the predictive capability of an ANN model is not always recommended. 

This is because a model may have a good correlation coefficient but predicts poorly when 

subjected to new data sets that were not used during the ANN training process.  
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Figure 4.3:  Scatter plots of ANN model for ECD 

 

 

 

4.2 Performance Evaluation of Developed ANN Model for ECD prediction 

 

 

4.2.1    Performance Plot 

 

From Figure 4.4, there exist 4 lines representing the training, validation, test and best lines. The 

line for the best is dotted. This means that the other lines (training, testing and validation lines) 

should lie on or close to it. If this happens, it signifies that the network was trained successfully. 

Generally, if any of the other 3 lines (training, testing and validation) meet or are in close 

proximity to the best line, it signifies that convergence has been achieved, and if it goes 

otherwise, then a retraining of the network is necessary. 
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               Figure 4.4: Performance plot for developed ANN model with 11 inputs 

The network was trained using data that was split into training, validation, and test data. Efforts 

were made to ensure that the performance curves were as similar as possible. Having the curves 

in a similar fashion is an indicator of how well the network performed and reduces the chances 

of overfitting (Beale, 2014). Figure 4.4 displays the performance curves for the selected 

network using the Levenberg Marquadt (LM)-learning algorithm and three hidden neurons. 

4.2.2    Model Performance 

The performance of the models after being evaluated using three statistical error metrics is 

summarized in Table 4.1. From the Table, the value for the coefficient of determination for the 

ANN model developed was 0.99926 indicating that 99% of the data fit the regression model. 

According to a categorization of R-values by Taylor (1990), a weak or low correlation has a 

value R≤0.35; a moderate correlation ranges between 0.36 ≤R≤0.67 and high correlation ranges 

between 0.68 <R <1.0 values.  

A small value of the MSE and RMSE indicates that it is close to finding the line of best 

fit. For a perfect model, the MSE and RMSE should have a numerical value of 0. In the case 

of the ECD data used in developing the ANN models, it was easy obtaining a small value for 

the MSE and RMSE. Therefore a test MSE value of 0.000298 for the model is acceptable. 

 

Table 4.1: Summary of ANN model performance for ECD prediction 

 R2 MSE RMSE AAPE 

Training  0.9992 0.000280986 0.01676 0.322 

Testing 0.99926 0.000298655 0.01728 0.369 
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Validation 0.99911 0.000358158 0.01892 0.424 

 

 

It is generally assumed that the RMSE for the training and test sets should be similar in 

numerical value for the model to be deemed “good”. However, if the RMSE value obtained for 

the test dataset is much higher than that of the training dataset, it signifies that data overfitting 

has occurred. This means that the developed model that tests well in the sample dataset used to 

develop it but would have little or no predictive value when subjected to new data sets. The 

reverse is the case with when the RMSE of the test data is much smaller than the training dataset 

RMSE. In this scenario, the data is said to be underfitted. In the case of the model developed 

in this work, it is clear from Table 4.1 that the RMSE value for the test data is very similar to 

the training RMSE, thus the model is generalizable.  

4.3 Model Weights and Biases 

 

The weights and biases of a neural network are essentially the most important parts of 

its development and functionality. The essence of including the crucial details (the weights and 

biases) of the models developed is to ensure that the models are reproducible (ability to recreate 

a model without the original code). Legendi et al. (2013) posited that model reproduction is 

scarcely carried out since successful reproductions do not seem to deliver new scientific results 

and the reasons of failed reproduction may be hard to discern.  Table 4.2 lists the weights and 

the biases of the developed empirical correlation that can be used to predict ECD.  

    Table 4.2: Weights and biases for ANN Model for ECD prediction       
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4.4 Mathematical Representation of Developed Model 
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For the ANN model to be explicitly presented, the weights and biases for the network 

were presented. These biases and weights are presented in Table 4.2. With these weights and 

biases, the model can be replicated and the results obtained therefrom can be reproduced. 

Equation 4.2 is the explicit representations of the model for ECD prediction. This explicit 

nature makes it easy for the models to be deployed in software and also makes them 

explainable.   

The explicit ANN model for ECD prediction using the weights and biases of the network is 

given by Equation 4.2: 

                     ECD = 5.595ECD𝑛 + 14.515      Equation 4.2          

  

 Where the denormalized value of the ECDn  = [A + B + C– 0.25]               

 

and 

 

A = 0.11 [ tanh (1.49𝑥1 + 0.75𝑥2 – 4.694𝑥3 – 0.45𝑥4  + 1.94𝑥5 – 0.7𝑥6 + 0.51𝑥7 –0.61𝑥8 –

0.12𝑥9 + 0.56𝑥10 +1.18𝑥11 – 1.66)] 

 

B = –0.17[ tanh (–1.09𝑥1 +2.02𝑥2 – 0.76𝑥3– 0.12𝑥4  – 2.46𝑥5 – 2.92𝑥6 + 3.06𝑥7 – 0.14𝑥8 – 

0.22𝑥9 + 0.31𝑥10 – 0.39𝑥11 +1.33)] 

 

C = –1.18[ tanh (–0.03𝑥1 + 0.04𝑥2 + 0.01𝑥3+ 0.01𝑥4  –0.71𝑥5 + 0.00058𝑥6 + 0.01𝑥7 – 0.04𝑥8 

– 0.03𝑥9 + 0.05𝑥10 – 0.09𝑥11 – 0.38)] 

Where  x1 = depth, x2 = temperature, x3 = pore pressure, x4  = flow rate, x5  = mud weight, x6 = 

average equivalent annular diameter across BHA, x7 = average equivalent annular diameter 

across DP, x8 = flow conduit length across BHA, x9 = flow conduit length across DP, x10 = 

average annular velocity across BHA and x11 = average annular velocity across DP 

 

5.1 Conclusion  

This work presents an ANN approach to modelling ECD by using field data. Eleven field inputs 

were used to build the model. On the basis of the results obtained in this study, the following 

are the main conclusions:  

i. The vast majority of the correlations that have been developed to forecast mud ECD 

are founded on information gathered from fields outside the Niger Delta. In comparison 

to field values from the Niger Delta region, their predictions either produce lower or 

higher values. 

ii. Previous efforts also neglected to take into account model reproducibility and 

replicability. For instance, the authors did not reveal the weights and biases of the 

models. Due to this, it is challenging to reproduce the models. 

 

iii. Unlike the existing ANN models, which are black boxes, the ANN model proposed in 

this work is clear, making it deployable in software applications. 

 

5.2 Suggestions for Further Studies 

Notwithstanding the study's innovative conclusions, there are also other factors to take 

into account. These include:  

i. In this study, ANN was the only method employed to forecast mud ECD. The predictive 

power of the model can be increased by combining ANN with evolutionary techniques. 
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There are other more evolutionary algorithms with which one might experiment. 

Artificial bee colonies and ant colony optimization are two of the most intriguing. 

Another area that needs investigation is which of them would be better suited for mud 

ECD optimization from oil wells during drilling based on a thorough analysis of all of 

them. 

ii. How to change evolutionary algorithms to handle a stream of continuously changing 

training data rather than fixed training data is a second issue that merits investigation. 

iii. Several datasets must be used to test the effectiveness of models. To assure data 

availability for the testing, extensive experiments and/or numerical simulations should 

be run under diverse scenarios. 
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